Sample Question Paper

CLASS: XII

Session: 2022-23

Applied Mathematics (Code-241)

Marking Scheme

Section – A

	Each question carries 1-mark weightage
1.	$x \equiv 27 \pmod{4}$ $\Rightarrow x - 27 = 4k$, for some integer k $\Rightarrow x = 31$ as $27 < x \le 36$ (C) option
2.	(D) option
3.	n = $26 \Rightarrow t = 3.07 > t_{25}(0.05) = 2.06$ (B) option
4.	$n = 34 \Rightarrow v = 34 - 1 = 33$ (B) option
5.	Speed of boat downstream = u = 10 km/h And, speed of boat upstream = v = 6 km/h $\Rightarrow \text{Speed of stream} = \frac{1}{2}(u - v) = 2 \text{ km/h}$ (B) option
6.	(C) option
7.	Truck A carries water = $100 - (\frac{20 \times 1500}{1000}) = 70 \ l$ Truck B carries water = $80 - (\frac{20 \times 1000}{1000}) = 60 \ l$ (C) option
8.	Let the face value of the bond = x Then, $\frac{10}{200}x = 1800 \Rightarrow x = 36000$ (D) option
9.	(C) option
10.	(D) option
11.	$D = \frac{C-S}{n} = \frac{480000 - 25000}{10} = 45500$ (B) option
12.	(A) option
13.	$\int \frac{dy}{y \log y} = \int \frac{dx}{x}$ $\Rightarrow \log(\log y) = \log x + \log C $ $\Rightarrow \log(\log y) = \log Cx $ $\Rightarrow y = e^{ Cx }$

	(B) option	
14.	$\left[\left(\frac{60000}{10000} \right)^{\frac{1}{4}} - 1 \right] \times 100 = \left[\sqrt[4]{6} - 1 \right] \times 100$ (C) option	
15.	Cheaper 0 480 Mean 300 180 300 = 3 : 5 (C) option	
16.	(D) option	
17.	(C) option	
18.	(B) option	
19.	P(Win in one game) = P(Lose in one game) = $\frac{1}{2}$ \Rightarrow P (Beena to win in 3 out of 4 games) = $\frac{4}{3}$. $\left(\frac{1}{2}\right)^4 = \frac{1}{4} = 25\%$ Assertion is correct and Reason is the correct explanation for it (A)option	
20.	Effective rate of interest = Nominal rate $-$ inflation rate = $12.5 - 2 = 10.5\%$ Assertion is correct Reason is true but not supportive of assertion (B) option	
	Section – B	
21.	Each question carries 2-mark weightage $P = 250000$, $R = 7500$, $i = r/400$	
21.	$\Rightarrow 250000 = \frac{7500 \times 400}{r} \Rightarrow r = 12$	1
	$\Rightarrow r = 12$	1
22.	$a - 8 = 1 \Rightarrow a = 9$ $3b = -2 \Rightarrow b = -\frac{2}{3}$	1
	$-c + 2 = -28 \Rightarrow c = 30$	
	$\Rightarrow 2a + 3b - c = -14$	1
	OR Expanding C ₁ , we get $\Delta = 1(2x^2 + 4) - 2(-4x - 20) = 86$	1
	$\Rightarrow x^2 + 4x - 21 = 0$ $\therefore x = 3, -7$	1
23.	Let the number of hardcopy and paperback copies be x and y respectively \Rightarrow Maximum profit Z = $(72x + 40y) - (9600 + 56x + 28y) = 16x + 12y - 9600$	1

	Subject to constraints: $x + y \le 960$ $5x + y \le 2400$ $x, y \ge 0$	1
	$5x + y \le 2400$	
		1
	^, y = 0	
24.	Speed of boat in still waters = x km/h	1
	Speed of stream = y km/h	
	Distance travelled = d km	
	Time taken to travel downstream = $\frac{d}{x+y}$	
	Time taken to travel upstream = $\frac{d^{x+y}}{d}$	
	x-y	1
	x+y $x-y$	
	OR	1
	Param runs 5 m in 3 seconds	
	\Rightarrow time taken to run 200 m = $\frac{3}{5} \times 200 = 120$ seconds	
		1
	Anuj 's time = 120 – 3 = 117 seconds	
25.	$V_f = 437500, V_i = 350000$	1
	Nominal rate = $\frac{V_f - V_i}{V_i} \times 100$	
	v_i	
	$= \frac{437500 - 350000}{350000} \times 100 = 25\%$	1
	$=\frac{350000}{350000} \times 100 = 25\%$	-
	Section – C	
	Each question carries 3-mark weightage	
26.	$f'(x) = x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3)$	1
	$\Rightarrow x = 1,2,3$	
	Strictly increasing in (1,2)∪(3,∞)	1
	Strictly decreasing in $(-\infty,1)\cup(2,3)$	1
27.	[2E00 6E]	
	Daily diet of team $A = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2500 & 65 \\ 1900 & 50 \end{bmatrix} = \begin{bmatrix} 12700 \\ 12700 \end{bmatrix}$	
	Daily diet of team A = $\begin{bmatrix} 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2500 & 65 \\ 1900 & 50 \\ 2000 & 54 \end{bmatrix} = \begin{bmatrix} 12700 \\ 334 \end{bmatrix}$	1.5
	Team A consumes 12700 calories and 334 g vitamin [2500 65]	
	Daily diet of team B = $\begin{bmatrix} 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 2500 & 65 \\ 1900 & 50 \\ 2000 & 54 \end{bmatrix} = \begin{bmatrix} 10300 \\ 273 \end{bmatrix}$	
	[2000 54] [273]	1.5
		1.5
	Team B consumes 10300 calories and 273 g vitamin	
28.	$\int \frac{dx}{(1+e^x)(1+e^{-x})}$	
	$\int \overline{(1+e^x)(1+e^{-x})}$	
		3
	$=\int \frac{e^{x}dx}{(1+e^{x})^{2}}$	
	$= \int \frac{e^x dx}{(1+e^x)^2}$	3

	$=\int \frac{dt}{t^2}$, where $t=e^x+1$ and $dt=e^xdx$	
	$=\frac{-1}{t}+C$	
	$= \frac{-1}{1+e^x} + C$	
	$\int_{II}^{x} \frac{log(1+x^2)dx}{I}$, Integration by parts	
	$= \log (1 + x^2) . \int x dx - \int \left[\frac{d}{dx} \log(1 + x^2) . \int x dx \right] dx$	
	$= \frac{x^2}{2} \log (1 + x^2) - \int \left[\frac{2x}{1 + x^2} \cdot \frac{x^2}{2} \right] dx$	
	$= \frac{x^2}{2} \log (1 + x^2) - \int \frac{x^3}{1 + x^2} dx$	
	$= \frac{x^2}{2} \log (1 + x^2) - \int \left[x - \frac{x}{1 + x^2} \right] dx$	
	$= \frac{x^2}{2} \log (1 + x^2) - \frac{x^2}{2} + \frac{1}{2} \log (1 + x^2) + C$	
	$= \frac{1}{2}[(1+x^2)\log(1+x^2) - x^2] + C$	
29.	Under pure competition, $p_d = p_s$	
	$\Rightarrow \frac{8}{x+1} - 2 = \frac{x+3}{2}$ $\Rightarrow x^2 + 8x - 9 = 0$	
	$\Rightarrow x = -9, 1$	1.5
	$\therefore x = 1$	
-	When $x_0 = 1 \Rightarrow p_0 = 2$	
	∴ Produce surplus = $2 - \int_0^1 \frac{x+3}{2} dx = 2 - \left[\frac{x^2}{4} + \frac{3x}{2}\right] = \frac{1}{4}$	1.5
	OR	
I I	$p = 274 - x^2$	
	$\Rightarrow R = px = 274x - x^3$ $\frac{dR}{dx} = 274x - 2x^2$	
	$\frac{dR}{dx} = 274 - 3x^2$ Given MR = 4 + 3x	1.5
	In profit monopolist market,	
	MR = $\frac{dR}{dx} \Rightarrow 4 + 3x = 274 - 3x^2$	
I I	$\Rightarrow x^2 + x - 90 = 0$	

	$\Rightarrow x = -10.9$	
	$\Rightarrow x = -10, 9$ $\therefore x = 9$	
	$\begin{array}{c} \therefore x - y \\ \text{When } x_0 = 9 \Rightarrow p_0 = 193 \end{array}$	
	$\therefore \text{ Consumer surplus} = \int_0^9 (274 - x^2) dx - 193 \times 9$	
	$= \left[274x - \frac{x^3}{3}\right]$	1.5
	U	
20	= 486	
30.	Purchase = ₹ 40,00,000	
	Down payment = x	
	Balance = 40,00,000 – x	
	$i = \frac{9}{1200} = 0.0075$, n = 25 x 12 = 300	1
	E = ₹ 30,000	
	$\Rightarrow 30000 = \frac{(4000000 - x) \times 0.0075}{1 - (1.0075)^{-300}}$	
	$\Rightarrow 30000 = \frac{1 - (1.0075)^{-300}}{1 - (1.0075)^{-300}}$	
	$\Rightarrow 30000 = \frac{(4000000 - x) \times 0.0075}{1 - 0.1062}$	
	$\Rightarrow 30000 = \frac{1 - 0.1062}{1 - 0.1062}$	2
	$\Rightarrow x = 424800$	
	Down payment = ₹ 4,24,800	
31.	n = 10 x 2 = 20, S = 10,21,760, $i = \frac{5}{200}$ = 0.025, R = ?	
		1.5
	$S = R \left[\frac{(1+i)^n - 1}{i} \right]$ $\Rightarrow 1021760 = R \left[\frac{(1+0.025)^{20} - 1}{0.025} \right]$	
	\Rightarrow 1021760 = R $\left[\frac{(1+0.025)^{3}-1}{0.025}\right]$	
	\Rightarrow 1021760 = R $\left[\frac{1.6386-1}{0.025}\right]$	
	$\Rightarrow R = \left[\frac{1021760 \times 0.025}{0.6386}\right]$	
	⇒ R = ₹ 40,000	1.5
	Mr Mehra set aside an amount of ₹ 40,000 at the end of every six months	
	Section – D	
	Each question carries 5-mark weightage	
32.	Probability of defective bucket = 0.03	
	n = 100	
	$m = np = 100 \times 0.03 = 3$	1
	Let X = number of defective buckets in a sample of 100	1
	$P(X = r) = \frac{m^r e^{-m}}{r!}, r = 0,1,2,3,$	
	(i) P (no defective bucket) = P(r = 0) = $\frac{3^0 e^{-3}}{0!}$ = 0.049	2
		2
	$=\frac{3^0e^{-3}}{0!}+\frac{3^1e^{-3}}{1!}$	

	= 0.049 + 0.147	
	= 0.049 + 0.147 = 0.196	
	OR V	
	X = scores of students, $\mu = 45, \sigma = 5$	1
	$\therefore Z = \frac{X - \mu}{\sigma} = \frac{X - 45}{5}$	1
	σ 5	
	(1) 141 1/4 45 7/4 0	
	(i) When $X = 45$, $Z = 0$	
	P(X > 45) = P(Z > 0) = 0.5	2
	\Rightarrow 50% students scored more than the mean score	
	(ii) When $X = 30$, $Z = -3$ and when $X = 50$, $Z = 1$	
	$P(30 < X < 50) = P(-3 < Z < 1) = P(-3 < Z \le 1)$	
	$= P(-3 < Z \le 0) + P(0 \le Z < 1)$	
	$= P (0 \le Z < 3) + P (0 \le Z < 1)$	2
	= 0.4987 + 0.3413 = 0.84	
	\Rightarrow 84% students scored between 30 and 50 marks	
33.	Let x be the number of guests for the booking	
	Clearly, $x > 100$ to avail discount	
	:. Profit, P = $[4800 - \frac{200}{10}(x - 100)] x = 6800x - 20x^2$	2
	From, $P = [4800 - \frac{1}{10}(x - 100)]x - 0000x - 20x$	
	dD	
	$\Rightarrow \frac{dP}{dx} = 6800 - 40 x \Rightarrow x = 170$	1
		1
	As $\frac{d^2P}{dx^2} = -40 < 0, \forall x$	
	$dx^2 = 10 \cdot 0, \sqrt{x}$	1
	A booking for 170 guests will maximise the profit of the company	
	And, Profit = ₹ 5,78,000	1
	7.110,7.10110 (3,7.0,000	-
	OR	
	P(x) = R(x) - C(x)	2
	$= 5x - (100 + 0.025x^2)$	
	$\Rightarrow P'(x) = 5 - 0.05 x \Rightarrow x = 100$	1
	As P''(x) = $-0.05 < 0$, $\forall x$	1
	∴ Manufacturing 100 dolls will maximise the profit of the company	
	And, Profit = ₹ 1,50,000	1
34.	Let the number of tables and chairs be x and y respectively	
	(Max profit) $Z = 22x + 18y$	
	Subject to constraints:	
	$x + y \le 20$	1.5
	$3x + 2y \le 48$	
	$x, y \ge 0$	
L	- L	

	A(0,20) B(8,12) $y = 0$ $y \ge 0$ $x + y \le 20$	2				
	The feasible region OABCA is closed (bounded) $ \begin{array}{c cccc} \hline Corner points & Z = 22 x + 18 y \\ \hline O (0,0) & 0 \\ A (0,20) & 360 \\ \hline B (8,12) & 392 \\ \hline C (16,0) & 352 \\ \hline Buying 8 tables and 12 chairs will maximise the profit$					
35.	$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 2 \\ 2 & 3 & 2 \end{bmatrix}$ $\Rightarrow A = 9 \Rightarrow A^{-1} \text{ exists}$ $And A^{-1} = \frac{1}{9} \begin{bmatrix} -2 & 5 & -2 \\ -2 & -4 & 7 \\ 5 & 1 & -4 \end{bmatrix}$					
	$AX = B \Rightarrow X = A^{-1}B$ $\Rightarrow X = \frac{1}{9} \begin{bmatrix} -2 & 5 & -2 \\ -2 & -4 & 7 \\ 5 & 1 & -4 \end{bmatrix} \begin{bmatrix} 85 \\ 105 \\ 110 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \\ 10 \end{bmatrix}$ $\Rightarrow p_1 = 15, p_2 = 20, p_3 = 10$					
	Section – E Each Case study carries 4-mark weightage					
36.	CASE STUDY - I					
a)	Pipe C empties 1 tank in 20 h \Rightarrow 2/5 th tank in $\frac{2}{5} \times 20 = 8$ hours	1				
b)	Part of tank filled in 1 hour = $\frac{1}{15} + \frac{1}{12} - \frac{1}{20} = \frac{1}{10}$ th \Rightarrow time taken to fill tank completely = 10 hours	1				
c)	At 5 am,	2				

Let the tank be completely filled in 't' hours
⇒pipe A is opened for 't' hours
pipe B is opened for 't-3' hours
And, pipe C is opened for ' $t-4$ ' hours

 \Rightarrow In one hour, part of tank filled by pipe A = $\frac{t}{15}$ th part of tank filled by pipe B = $\frac{t-3}{15}$ th and, part of tank emptied by pipe $C = \frac{t-4}{15}$ th

Therefore
$$\frac{t}{15} + \frac{t-3}{12} - \frac{t-4}{20} = 1$$

Total time to fill the tank = 10 hours 30 minutes

OR

6 am, pipe C is opened to empty 1/2 filled tank

Time to empty = 10 hours

Time for cleaning = 1 hour

Part of tank filled by pipes A and B in 1 hour= $\frac{1}{15} + \frac{1}{12} = \frac{3}{20}$ th tank \Rightarrow time taken to fill the tank completely = $\frac{20}{3}$ hours

Total time taken in the process = $10 + 1 + \frac{20}{3} = 17$ hour 40 minutes

CASE STUDY - II 37.

a)

Year	Υ	Χ	X ²	XY
2015	35	-2	4	-70
2016	42	-1	1	-42
2017	46	0	0	0
2018	41	1	1	41
2019	48	2	4	96
	212		10	25

$$a = \frac{\sum Y}{n} = \frac{212}{5} = 42.4$$
 and $b = \frac{\sum XY}{\sum X^2} = \frac{25}{10} = 2.5$

 $Y_C = 42.4 + 2.5X$

2

OR

Year	Υ	3-year moving average
2015	35	-
2016	42	41
2017	46	43
2018	41	45
2019	48	-

		y Sales (in ₹ thousands) 20 30 30 20	15 2016	2017 2018 2 Years	Trend Line	→ <i>x</i>			
b)	For year 2022 ⇒ the estima	$Y_{2022} = 4$				2017) = 00	54.9		1
c)	Sales will he ₹	$Y_C = 42.4 + 2.5X$ $\Rightarrow 67.4 = 42.4 + 2.5X$ $\Rightarrow X = 10$ Sales will be $\stackrel{?}{=}$ 67,400 in year (2017+ 10) = year 2027							1
38.	CASE STUDY -		, ca.	(202)					
a)	$\frac{k}{6} + \frac{2k}{6} + \frac{3(1-k)}{6} + \frac{4k}{2} = 1 \Rightarrow k = \frac{1}{4}$							1	
b)	P (getting admission on applying at least 2 weeks ahead of application deadline) $= P (X = 2,3,4)$ $= \frac{1}{12} + \frac{3}{8} + \frac{1}{2} = \frac{23}{24}$ [alternate method: $1 - P (X = 1) = 1 - \frac{1}{24} = \frac{23}{24}$]							1	
c)	X = week applied ahead of application deadline								
	X X	1	.cu a	2				4	
		1		1	•	3		1	
	P(X)	$\frac{1}{24}$		$\frac{1}{12}$	_	3 3 8		$\frac{1}{2}$	
	XP(X)	$\frac{1}{24}$		$\frac{1}{6}$		$\frac{9}{8}$		2	
	$\therefore E(X) = \frac{80}{24} = 3\frac{1}{3} \text{ weeks}$							2	
			<u> </u>	0	R				
	X = Scholarshi	ip money av	ward	ed for th	ie weel	c applied i	n, before	the	
	Week applied in	1	2		3	4			
	Х	9600	120	000	20000	50	000		

P(X)	$\frac{1}{24}$	$\frac{1}{12}$	$\frac{3}{9}$	$\frac{1}{2}$	
XP(X)	$\frac{9600}{24}$	$\frac{12000}{12}$	60000	50000	
∴ E(X) = ₹					
